nets apply-model¶
Applies a trained keras model to a series of feature datasets to map model predictions.
usage: nets apply-model [-h] -f filepath -o output_file
[--fscaler features_scaler]
[--rscaler response_scaler] [--eval-window percent]
[--nodata-pass] [--nodata-fraction percent]
[--te xmin ymin xmax ymax] [--ot dtype]
[--dstnodata value] [--use-latest] [--cores CORES]
model_config
positional arguments:
model_config Path to the myco model configuration file (.yml). From
the saved model directory.
optional arguments:
-h, --help show this help message and exit
-f filepath, --features filepath
Path to raster-format feature data to extract
(default: None)
-o output_file Path to the output output model predictions. (default:
None)
--fscaler features_scaler
Path to the scaler to apply to the feature data.
(default: None)
--rscaler response_scaler
Path to the scaler to apply to the response data.
(default: None)
--eval-window percent
The proportion of the interior window to save
predictions from. (default: 0.5)
--nodata-pass Read the feature data prior to application to filter
out tiles with nodata. (default: False)
--nodata-fraction percent
The proportion of allowable nodata in a tile to apply
the model. (default: 0.0)
--te xmin ymin xmax ymax
Apply the model only to these target extent bounds.
Units must match features CRS. (default: None)
--ot dtype The output raster datatype. (default: float32)
--dstnodata value The output raster nodata value. (default: None)
--use-latest Apply the most recent model instead of the best model.
(default: False)